Correction: An In-Silico Model of Lipoprotein Metabolism and Kinetics for the Evaluation of Targets and Biomarkers in the Reverse Cholesterol Transport Pathway
نویسندگان
چکیده
High-density lipoprotein (HDL) is believed to play an important role in lowering cardiovascular disease (CVD) risk by mediating the process of reverse cholesterol transport (RCT). Via RCT, excess cholesterol from peripheral tissues is carried back to the liver and hence should lead to the reduction of atherosclerotic plaques. The recent failures of HDL-cholesterol (HDL-C) raising therapies have initiated a re-examination of the link between CVD risk and the rate of RCT, and have brought into question whether all target modulations that raise HDL-C would be atheroprotective. To help address these issues, a novel in-silico model has been built to incorporate modern concepts of HDL biology, including: the geometric structure of HDL linking the core radius with the number of ApoA-I molecules on it, and the regeneration of lipid-poor ApoA-I from spherical HDL due to remodeling processes. The ODE model has been calibrated using data from the literature and validated by simulating additional experiments not used in the calibration. Using a virtual population, we show that the model provides possible explanations for a number of well-known relationships in cholesterol metabolism, including the epidemiological relationship between HDL-C and CVD risk and the correlations between some HDL-related lipoprotein markers. In particular, the model has been used to explore two HDL-C raising target modulations, Cholesteryl Ester Transfer Protein (CETP) inhibition and ATP-binding cassette transporter member 1 (ABCA1) up-regulation. It predicts that while CETP inhibition would not result in an increased RCT rate, ABCA1 up-regulation should increase both HDL-C and RCT rate. Furthermore, the model predicts the two target modulations result in distinct changes in the lipoprotein measures. Finally, the model also allows for an evaluation of two candidate biomarkers for in-vivo whole-body ABCA1 activity: the absolute concentration and the % lipid-poor ApoA-I. These findings illustrate the potential utility of the model in drug development.
منابع مشابه
Attenuating Effect of Curcumin on Diet-induced Hypercholesterolemia in Mice
Background and Aims: Atherosclerosis is currently a chronic disease in which cholesterols accumulate in large arteries. Many genes such as liver X receptor α (LXRα) are involved in the cholesterol homeostasis. Curcumin, the main active polyphenol component derived from Curcuma longa, contribute to anti-inflammation and antioxidant in the treatment of atherosclerosis. Thus, this stud...
متن کاملThe Effect of Eight Weeks of Aquatic Aerobic Training on ABCA1 and ABCG1 Genes Expression in the Blood Mononuclear Cells in Women After Coronary Artery Bypass Grafting
Background: The aim of this research was to investigate the effect of aquatic aerobic training on regulatory factors related to Reverse Cholesterol Transport in women after coronary artery bypass grafting (CABG). Methods: 24 middle-aged women were studied after coronary artery bypass grafting (12 were in control group and 12 in aquatic aerobic training group)....
متن کاملHigh-Density Lipoprotein Measurement Methods: From Precipitation to Nuclear Magnetic Resonance (NMR)
Introduction: Extensive research suggests a common hypothesis regarding the protective role of total high-density lipoprotein-cholesterol (HDL-C) against cardiovascular disease (CVD). This hypothesis indicates an inverse relationship between CVD and high HDL-C levels. Various mechanisms, such as reverse cholesterol transport, besides anti-inflammatory and antioxidant functions, indicate HDL-C a...
متن کاملAnalysis of “On/Off” Kinetics of a CETP Inhibitor Using a Mechanistic Model of Lipoprotein Metabolism and Kinetics
RG7232 is a potent inhibitor of cholesteryl-ester transfer protein (CETP). Daily oral administration of RG7232 produces a dose- and time-dependent increase in high-density lipoprotein-cholesterol (HDL-C) and apolipoproteinA-I (ApoA-I) levels and a corresponding decrease in low-density lipoprotein-cholesterol (LDL-C) and apolipoproteinB (ApoB) levels. Due to its short plasma half-life (∼3 hours)...
متن کاملEffects of Eight Weeks of High Intensity Interval Training Program on Gene Expression Factors Involved in Cholesterol Reverse Transport in Liver Tissue of Ischemic Rat
Background and purpose: The present study aimed at exploring the effects of eight-week high intensity interval training (HIIT) program on gene expression factors involved in cholesterol reverse transport in liver tissue of ischemic rats. Materials and methods: In this study, 28 Wistar Rats (250 ±20 g) were randomly divided into four groups: Ischemia (n=8), Placebo (n=8), Training (n=8), and Is...
متن کامل